Neuronal Voltage-Gated Calcium Channels: Structure, Function, and Dysfunction

نویسندگان

  • Brett A. Simms
  • Gerald W. Zamponi
چکیده

Voltage-gated calcium channels are the primary mediators of depolarization-induced calcium entry into neurons. There is great diversity of calcium channel subtypes due to multiple genes that encode calcium channel α1 subunits, coassembly with a variety of ancillary calcium channel subunits, and alternative splicing. This allows these channels to fulfill highly specialized roles in specific neuronal subtypes and at particular subcellular loci. While calcium channels are of critical importance to brain function, their inappropriate expression or dysfunction gives rise to a variety of neurological disorders, including, pain, epilepsy, migraine, and ataxia. This Review discusses salient aspects of voltage-gated calcium channel function, physiology, and pathophysiology.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Channelopathies and dendritic dysfunction in fragile X syndrome.

Dendritic spine abnormalities and the metabotropic glutamate receptor theory put the focus squarely on synapses and protein synthesis as the cellular locus of fragile X syndrome. Synapses however, are only partly responsible for information processing in neuronal networks. Neurotransmitter triggered excitatory postsynaptic potentials (EPSPs) are shaped and integrated by dendritic voltage-gated ...

متن کامل

The C Terminus of the L-Type Voltage-Gated Calcium Channel CaV1.2 Encodes a Transcription Factor

Voltage-gated calcium channels play a central role in regulating the electrical and biochemical properties of neurons and muscle cells. One of the ways in which calcium channels regulate long-lasting neuronal properties is by activating signaling pathways that control gene expression, but the mechanisms that link calcium channels to the nucleus are not well understood. We report that a C-termin...

متن کامل

The interplay of excitatory and inhibitory coupling modes is crucial for the regulation of neuronal electrical activities by L-type calcium channels

Background Neuronal L-type voltage-gated calcium channels (LTCCs) have long been implicated in the regulation of excitability. This function appears to be related to the coupling of LTCC-mediated Ca influx to Ca-dependent conductances, such as KCa channels, e.g. KV2.x (SK), and nonspecific cation (CAN) channels. However, despite numerous data related to the molecular functioning of LTCCs, littl...

متن کامل

Regulation of voltage-gated ion channels by NGF and ciliary neurotrophic factor in SK-N-SH neuroblastoma cells.

Neurotrophic factors have powerful effects on neuronal differentiation and the maintenance of neuronal phenotype, but understanding of their regulation of one important aspect of neuronal function, excitability, remains limited. We have examined the regulation of voltage-gated ion channels by two unrelated neurotrophic factors, NGF and ciliary neurotrophic factor (CNTF), in the SK-N-SH neurobla...

متن کامل

Effects of toxic environmental contaminants on voltage-gated calcium channel function: from past to present.

Voltage-gated Ca2+ channels are targets of the number of naturally occurring toxins, therapeutic agents as well as environmental toxicants. Because of similarities of their chemical structure to Ca2+ in terms of hydrated ionic radius, electron orbital configuration, or other chemical properties, polyvalent cations from aluminum to zinc variously interact with multiple types of voltage-gated Ca2...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neuron

دوره 82  شماره 

صفحات  -

تاریخ انتشار 2014